首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Evidence of variability in the structure and recruitment of rhizospheric and endophytic bacterial communities associated with arable sweet sorghum (Sorghum bicolor (L) Moench)
Authors:Jean-Baptiste Ramond  Freedom Tshabuse  Cyprien W Bopda  Don A Cowan  Marla I Tuffin
Institution:1. Institute for Microbial Biotechnology and Metagenomics (IMBM), Department of Biotechnology, University of the Western Cape, Bellville, 7535, Cape Town, South Africa
2. Centre for Microbial Ecology and Genomics (CMEG), Department of Genetics, University of Pretoria, Pretoria, 0002, South Africa
Abstract:

Background and aims

Sorghum is the second most cultivated crop in Africa and is a staple food source in many African communities. Exploiting the associated plant growth-promoting bacteria (PGPB) has potential as an agricultural biotechnology strategy to enhance sorghum growth, yield and nutritional properties. Therefore this study aimed to evaluate factors that shape bacterial communities associated with sorghum farmed in South Africa, and to detect bacteria consistently associated with sorghum which may impart PGP activities.

Methods

Terminal-Restriction Fragment Length Polymorphism (T-RFLP) was used to assess factors that potentially shape rhizospheric (rhizosphere and rhizoplane) and endophytic (root, shoot, stem) bacterial communities associated with South African sorghum, and together with Denaturing Gradient Gel Electrophoresis (DGGE) to identify consistently sorghum-associated bacterial taxa.

Results

The sorghum rhizospheric communities were less variable than the endophytic ones. Geographical location was the main driver in describing bacterial community assemblages found in rhizospheric sorghum-linked niches, with total NO3-N, NH4-N, nitrogen, carbon, pH and, to a lesser extent, clay content identified as the main abiotic factors shaping sorghum-associated soil communities. Endophytic communities presented rather stochastic assemblages, with pH being the main variable explaining their structures. Despite community variations, specific bacterial taxa were consistently detected in sorghum-created rhizospheric and endophytic environments, irrespective of environmental factor effects.

Conclusions

Soil structure and composition, which are influenced by agricultural practices, played major roles in shaping sorghum-associated edaphic bacterial communities. In contrast, endophytic bacterial communities displayed more variation. Nevertheless, potentially agronomically relevant (cyano)bacterial taxa constantly associated with sorghum were identified which is suggestive of their deterministic recruitment.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号