首页 | 本学科首页   官方微博 | 高级检索  
     


The genetic network of greater sage‐grouse: Range‐wide identification of keystone hubs of connectivity
Authors:Todd B. Cross  Michael K. Schwartz  David E. Naugle  Brad C. Fedy  Jeffrey R. Row  Sara J. Oyler‐McCance
Affiliation:1. USDA Forest Service, National Genomics Center for Wildlife and Fish Conservation, Rocky Mountain Research Station, Missoula, Montana;2. College of Forestry and Conservation, University of Montana, Missoula, Montana;3. School of Environment, Resources and Sustainability, University of Waterloo, Waterloo, ON, Canada;4. U.S. Geological Survey Fort Collins Science Center, Fort Collins, Colorado
Abstract:Genetic networks can characterize complex genetic relationships among groups of individuals, which can be used to rank nodes most important to the overall connectivity of the system. Ranking allows scarce resources to be guided toward nodes integral to connectivity. The greater sage‐grouse (Centrocercus urophasianus) is a species of conservation concern that breeds on spatially discrete leks that must remain connected by genetic exchange for population persistence. We genotyped 5,950 individuals from 1,200 greater sage‐grouse leks distributed across the entire species’ geographic range. We found a small‐world network composed of 458 nodes connected by 14,481 edges. This network was composed of hubs—that is, nodes facilitating gene flow across the network—and spokes—that is, nodes where connectivity is served by hubs. It is within these hubs that the greatest genetic diversity was housed. Using indices of network centrality, we identified hub nodes of greatest conservation importance. We also identified keystone nodes with elevated centrality despite low local population size. Hub and keystone nodes were found across the entire species’ contiguous range, although nodes with elevated importance to network‐wide connectivity were found more central: especially in northeastern, central, and southwestern Wyoming and eastern Idaho. Nodes among which genes are most readily exchanged were mostly located in Montana and northern Wyoming, as well as Utah and eastern Nevada. The loss of hub or keystone nodes could lead to the disintegration of the network into smaller, isolated subnetworks. Protecting both hub nodes and keystone nodes will conserve genetic diversity and should maintain network connections to ensure a resilient and viable population over time. Our analysis shows that network models can be used to model gene flow, offering insights into its pattern and process, with application to prioritizing landscapes for conservation.
Keywords:   Centrocercus urophasianus     graph theory  multiscale conservation prioritization
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号