首页 | 本学科首页   官方微博 | 高级检索  
     


Functional and phylogenetic diversity determine woody productivity in a temperate forest
Authors:MinHui Hao  Chunyu Zhang  Xiuhai Zhao  Klaus von Gadow
Affiliation:1. Research Center of Forest Management Engineering of State Forestry Administration, Beijing Forestry University, Beijing, China;2. Faculty of Forestry and Forest Ecology, Georg‐August‐University G?ttingen, G?ttingen, Germany;3. Department of Forest and Wood Science, University of Stellenbosch, Stellenbosch, South Africa
Abstract:Understanding the relationships between biodiversity and ecosystem productivity has become a central issue in ecology and conservation biology studies, particularly when these relationships are connected with global climate change and species extinction. However, which facets of biodiversity (i.e. taxonomic, functional, and phylogenetic diversity) account most for variations in productivity are still not understood very well. This is especially true with regard to temperate forest ecosystems. In this study, we used a dataset from a stem‐mapped permanent forest plot in northeastern China exploring the relationships between biodiversity and productivity at different spatial scales (20 × 20 m; 40 × 40 m; and 60 × 60 m). The influence of specific environmental conditions (topographic conditions) and stand maturity (expressed by initial stand volume and biomass) were taken into account using the multivariate approach known as structural equation models. The variable “Biodiversity” includes taxonomic (Shannon), functional (FDis), and phylogenetic diversity (PD). Biodiversity–productivity relationships varied with the spatial scales. At the scale of 20 × 20 m, PD and FDis significantly affected forest biomass productivity, while Shannon had only indirect effects. At the 40 × 40 m and 60 × 60 m scales, biodiversity and productivity were weakly correlated. The initial stand volume and biomass were the most important drivers of forest productivity. The local environmental conditions significantly influenced the stand volume, biomass, biodiversity, and productivity. The results highlight the scale dependency of the relationships between forest biodiversity and productivity. The positive role of biodiversity in facilitating forest productivity was confirmed at the smaller scales. Our findings emphasize the fundamental role of environmental conditions in determining forest ecosystem performances. The results of this study provide a better understanding of the underlying ecological processes that influence specific forest biodiversity and productivity relationships.
Keywords:Biodiversity–  productivity relationship  biomass  environmental conditions  functional diversity  phylogenetic diversity  structural equation models
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号