首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Heterodimerization of substance P and mu-opioid receptors regulates receptor trafficking and resensitization
Authors:Pfeiffer Manuela  Kirscht Susanne  Stumm Ralf  Koch Thomas  Wu Daifei  Laugsch Magdalena  Schröder Helmut  Höllt Volker  Schulz Stefan
Institution:Department of Pharmacology and Toxicology, Otto-von-Guericke University, 39120 Magdeburg, Germany.
Abstract:The micro-opioid receptor (MOR1) and the substance P receptor (NK1) coexist and functionally interact in nociceptive brain regions; however, a molecular basis for this interaction has not been established. Using coimmunoprecipitation and bioluminescence resonance energy transfer (BRET), we show that MOR1 and NK1 can form heterodimers in HEK 293 cells coexpressing the two receptors. Although NK1-MOR1 heterodimerization did not substantially change the ligand binding and signaling properties of these receptors, it dramatically altered their internalization and resensitization profile. Exposure of the NK1-MOR1 heterodimer to the MOR1-selective ligand D-Ala2,Me-Phe4,Gly5-ol]enkephalin (DAMGO) promoted cross-phosphorylation and cointernalization of the NK1 receptor. Conversely, exposure of the NK1-MOR1 heterodimer to the NK1-selective ligand substance P (SP) promoted cross-phosphorylation and cointernalization of the MOR1 receptor. In cells expressing MOR1 alone, beta-arrestin directs the receptors to clathrin-coated pits, but does not internalize with the receptor. In cells expressing NK1 alone, beta-arrestin internalizes with the receptor into endosomes. Interestingly, in cells coexpressing MOR1 and NK1 both DAMGO and SP induced the recruitment of beta-arrestin to the plasma membrane and cointernalization of NK1-MOR1 heterodimers with beta-arrestin into the same endosomal compartment. Consequently, resensitization of MOR1-dependent receptor functions was severely delayed in coexpressing cells as compared with cells expressing MOR1 alone. Together, our findings indicate that MOR1 by virtue of its physical interaction with NK1 is sequestered via an endocytotic pathway with delayed recycling and resensitization kinetics.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号