Negative interactions between chemical resistance and predators affect fitness in soybeans |
| |
Authors: | RYAN BARTLETT |
| |
Affiliation: | Department of Biology, Duke University, Durham, North Carolina, U.S.A. |
| |
Abstract: | Abstract 1. Plants may benefit from both chemical resistance traits and the presence of predators of herbivores. In past studies, the interaction between resistance and predators varies from complementary to antagonistic among different systems. However, this interaction has primarily been quantified by effects on predator abundance or vigor, not effects on plant fitness. 2. In this study, the combined effects of chemical resistance and predators on plant fitness were examined using soybeans (Glycine max), herbivorous Mexican bean beetles (Epilachna varivestis), and predaceous spined soldier bugs (Podisus maculiventris). Mexican bean beetles were reared in field cages in the presence or absence of spined soldier bugs on soybeans with or without strong constitutive chemical resistance. 3. Spined soldier bugs were more likely to feed on Mexican bean beetles that fed on susceptible than on resistant plants. 4. Susceptible plants with predators produced significantly more seeds than those without predators, while resistant plants did not produce significantly different numbers of seeds based on the presence or absence of predators. 5. Selection for the production of some types of chemical resistance in plants would thus be expected to be stronger with lower predation rates. 6. These results also suggest predator introductions would be more effective on plants without a strong constitutive chemical resistance to herbivores. |
| |
Keywords: | Epilachna varivestis Glycine max indirect effects Podisus maculiventris tritrophic interactions |
|
|