首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Negative control of store-operated Ca2+ influx by B cell receptor cross-linking
Authors:Hashimoto A  Hirose K  Kurosaki T  Iino M
Institution:Department of Pharmacology, Graduate School of Medicine, University of Tokyo, Japan.
Abstract:An increase in the intracellular Ca(2+) concentration by B cell receptor (BCR) cross-linking plays important roles in the regulation of B cell functions. Ca(2+)](i) is regulated by Ca(2+) release from the Ca(2+) store as well as store-operated Ca(2+) influx (SOC). Protein tyrosine kinases downstream of BCR cross-linking were shown to regulate the mechanism for Ca(2+) release. However, it remains elusive whether BCR cross-linking regulates SOC or not. In this study, we examined the effect of BCR cross-linking on thapsigargin-induced SOC in the DT40 B cells. We found that the SOC-mediated increase in intracellular Ca(2+) concentration was inhibited by BCR cross-linking. Using a membrane-potential-sensitive dye, we found that BCR cross-linking induced depolarization, which is expected to decrease the driving force of Ca(2+) influx and SOC channel conductance. When membrane potential was held constant by the transmembrane K(+) concentration gradient in the presence of valinomycin, the BCR-mediated inhibition of SOC was still observed. Thus, the BCR-mediated inhibition of SOC involves both depolarization-dependent and depolarization-independent mechanisms of SOC inhibition. The depolarization-independent inhibition of the SOC was abolished in Lyn-deficient, but not in Bruton's tyrosine kinase-, Syk- or SHIP (Src homology 2 domain containing phosphatidylinositol 5'-phosphatase)-deficient cells, indicating that Lyn is involved in the inhibition. These results show novel pathways of BCR-mediated SOC regulations.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号