首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Machine Learning Based Computer Aided Diagnosis of Breast Cancer Utilizing Anthropometric and Clinical Features
Authors:MM Rahman  Y Ghasemi  E Suley  Y Zhou  S Wang  J Rogers
Institution:Department of Industrial, Manufacturing and Systems Engineering, The University of Texas at Arlington, TX 76019, USA
Abstract:Breast cancer is one of the most prevalent types of cancers in females, which has become rampant all over the world in recent years. The survival rate of breast cancer patients degrades considerably for patients diagnosed at an advanced stage compared to those diagnosed at an early stage. The objective of this study is two folds. The first one is to find the most relevant biomarkers of breast cancer, which can be attained from regular blood analysis and anthropometric measurements. The other one is to improve the performance of current computer-aided diagnosis (CAD) system of early breast cancer detection. This study utilized a recent data set containing nine anthropometric and clinical attributes. In our methodology, first, we performed multicollinearity analysis and ranked the features based on the weighted average score obtained from four filter-based feature evaluation methods such as F-score, information gain, chi-square statistic, and Minimum Redundancy Maximum Relevance. Next, to improve the separability of the target classes, we scaled and weighted the dataset using min-max normalization and similarity-based attribute weighting by the k-means clustering algorithm, respectively. Finally, we trained standard machine learning (ML) models and evaluated the performance metrics by 10-fold cross-validation method. Our support vector machine (SVM) model with radial basis function (RBF) kernel appeared to be the most successful classifier by utilizing six features, namely, Body Mass Index (BMI), Age, Glucose, MCP-1, Resistin, and Insulin. The obtained classification accuracy, sensitivity, and specificity are 93.9% (95% CI: 93.2–94.6%), 95.1% (95% CI: 94.4–95.8%), and 94.0% (95% CI: 93.3–94.7%), respectively; these performance metrics outperformed state-of-the-art methods reported in the literature. The developed model could potentially assist the medical experts for the early diagnosis of breast cancer by employing a set of attributes that can be easily obtained from regular blood analysis and anthropometric measurements.
Keywords:Breast cancer  Computer-aided diagnosis  Blood analysis  Machine learning  Feature selection  Expert systems
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号