首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Three-dimensional imaging of the mucus secretory process in the cryofixed frog respiratory epithelium.
Authors:E Puchelle  A Beorchia  M Ménager  J M Zahm  D Ploton
Institution:INSERM Unité 314, Université de Reims, France.
Abstract:Using the frog palate as a representative model of human mucociliary epithelium, we analyzed, after quick freezing fixation, the three-dimensional (3-D) respiratory mucus secretory release with high voltage (200-300 kV) transmission electron microscopy (TEM). The 3-D vision of the mucus release from the secretory cells was obtained as stereo-pairs and "bas-relief" images after analysis of stereo-pairs using an image analyzer. After standard glutaraldehyde fixation, the secretory cells showed a typical goblet shape with secretory granules heterogeneous in size and electron-density which often fuse together. On the other hand, quick-frozen secretory cells exhibited a columnar shape and their membrane-bound secretory granules contained a homogeneously dark matrix. The expanded gel mucus layer was preserved and its depth never exceeded 2 microns. When the epithelium was immersed in culture medium in presence of cholinergic agonist, a marked discharge of mucus was observed and the granules swelled at the apex of the secretory cell before being discharged in the lumen. In native cryofixed epithelium, the secretory granules exhibited a marked deformability during the process of their extrusion from the secretory cell. Clusters of secretory granules surrounded by cytoplasmic material were observed in the extracellular lumen, suggesting an apocrine-type secretion. These observations indicate that rapid cryofixation and 3-D stereoscopic imaging enable a unique opportunity to analyze, without artifact, the mucous secretory process. We speculate that, apart from the classical merocrine-type secretion mechanism, the respiratory mucus may be released, at least partly by an apocrine-type secretion.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号