首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Incompatible pathogen infection results in enhanced reactive oxygen and cell death responses in transgenic tobacco expressing a hyperactive mutant calmodulin
Authors:Scott A Harding  Daniel M Roberts
Institution:(1) Department of Biochemistry, Cellular and Molecular Biology and Center for Legume Research, University of Tennessee, Knoxville, TN 37996, USA, US
Abstract:Transgenic tobacco (Nicotiana tabacum L. cv. Wisconsin 38) lines expressing a mutant calmodulin (VU-3) that hyperactivates NAD kinase exhibit an enhanced elicitor-stimulated oxidative-burst reaction (S.A. Harding et al., 1997, EMBO J. 16: 1137–1144). VU-3 transgenic tobacco was used in the present study to investigate the relationship between calmodulin signalling, the production of active oxygen species and cell death in response to infection with an incompatible pathogen. Following P. syringae pv. syringae 61 infection, suspension cells derived from VU-3 transgenic plants exhibited a stronger oxidative burst (3- to 4-fold higher primary and secondary burst reactions), greater media alkalinization (3-fold) and more rapid cell death (4-fold greater mortality at 20 h post infection) than did infected control tobacco cells. Infection of leaf tissues with P. syringae pv. syringae 61 also resulted in an enhanced cell death response compared to control tobacco tissues. This cell death response of VU-3 leaf tissues, but not control leaf tissues, was further enhanced by the presence of 50 μM salicylic acid, suggesting that this transgenic line is more sensitive to the effects of this agent. Overall, the data support the model that calmodulin signalling pathways are involved in the plant oxidative burst and contribute to the regulation of cell death in infected plant tissues undergoing the hypersensitive response. Received: 6 January 1998 / Accepted: 7 March 1998
Keywords:: Calcium  Calmodulin  Hypersensitive response  NAD kinase  Nicotiana (mutant calmodulin)  Oxidative burst
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号