首页 | 本学科首页   官方微博 | 高级检索  
     


Neurovascular coupling and oximetry during epileptic events
Authors:Minah Suh  Hongtao Ma  Mingrui Zhao  Saadat Sharif  Theodore H. Schwartz
Affiliation:(1) Department of Neurological Surgery, Weill Cornell Medical College, New York Presbyterian Hospital, New York, NY
Abstract:Epilepsy is an abnormal brain state in which a large population of neurons is synchronously active, causing an enormous increase in metabolic demand. Recent investigations using high-resolution imaging techniques, such as optical recording of intrinsic signals and voltagesensitive dyes, as well as measurements with oxygen-sensitive electrodes have elucidated the spatiotemporal relationship between neuronal activity, cerebral blood volume, and oximetry in vivo. A focal decrease in tissue oxygenation and a focal increase in deoxygenated hemoglobin occurs following both interictal and ictal events. This “epileptic dip” in oxygenation can persist for the duration of an ictal event, suggesting that cerebral blood flow is inadequate to meet metabolic demand. A rapid focal increase in cerebral blood flow and cerebral blood volume also accompanies epileptic events; however, this increase in perfusion soon (>2 s) spreads to a larger area of the cortex than the excitatory change in membrane potential. Investigations in humans during neurosurgical operations have confirmed the laboratory data derived from animal studies. These data not only have clinical implications for the interpretation of noninvasive imaging studies such as positron emission tomography, single-photon emission tomography, and functional magnetic resonance imaging but also provide a mechanism for the cognitive decline in patients with chronic epilepsy.
Keywords:Epilepsy  ictal  interictal  intrinsic signal  optical imaging  voltage-sensitive dye  oxygen-sensitive electrodes  neurovascular coupling  oximetry  initial dip  BOLD  rat  seizure  human
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号