首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Genetic dissection of the yeast 26S proteasome: cell cycle defects caused by the Deltarpn9 mutation
Authors:Takeuchi J  Toh-e A
Institution:Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo, 113-0033, Tokyo, Japan.
Abstract:Rpn9 is one of the subunits of the regulatory particle of the yeast 26S proteasome and is needed for stability or efficient assembly of the 26S proteasome. As anticipated from the fact that the rpn9 disruptant grew at 25 degrees C but arrested in G2/M phase at 37 degrees C, the CDK inhibitor Sic1p was found to be degraded at the G1/S boundary in the Deltarpn9 cells. The degradation of the anaphase inhibitor Pds1p was delayed in the Deltarpn9 cells. Clb2p in M phase, as well as that ectopically expressed in G1 and S phases, was degraded more slowly in the Deltarpn9 cells than in the wild type cells, indicating that the 26S proteasome lacking Rpn9 uses Sic1p as a better substrate than Pds1p and Clb2p. These results, in addition to the fact that multiubiquitinated proteins were accumulated in the Deltarpn9 cells incubated at 37 degrees C, strongly suggest that Rpn9 is involved in the proteolysis of a subset of the substrates degraded by the 26S proteasome. The Deltarpn9 Deltapds1 double mutant was unable to elongate spindle at a restrictive temperature, suggesting that some protein(s) other than Scc1 (cohesin) should be degraded during progression of anaphase.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号