首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Fold recognition,homology modeling,docking simulations,kinetics analysis and mutagenesis of ATP/CTP:tRNA nucleotidyltransferase from Methanococcus jannaschii
Authors:Bujnicki Janusz M  Albert Megan A  Nelson Donald J  Thurlow David L
Institution:Bioinformatics Laboratory, International Institute of Molecular and Cell Biology, Warsaw, Poland. iamb@genesilico.pl
Abstract:ATP/CTP:tRNA nucleotidyltransferases (NTases) and poly(A) polymerases (PAPs) belong to the same superfamily and their catalytic domains are remotely related. Based on the results of fold-recognition analysis and comparison of secondary structure patterns, we predicted that these two NTase families share three domains, corresponding to "palm," "fingers," and "fingernails" in the PAP crystal structure. A homology model of tRNA NTase from Methanococcus jannaschii was constructed. Energy minimization calculations of enzyme-nucleotide complexes and computer-aided docking of nucleotides onto the enzyme's surface were carried out to explore possible ATP and CTP binding sites. Theoretical models were used to guide experimental analysis. Recombinant His-tagged enzyme was expressed in Escherichia coli, and kinetic properties were characterized. The apparent K(M) for CTP was determined to be 38 microM, and the apparent K(M) for ATP was 21 microM. Three mutations of basic amino acids to alanine were created in a highly conserved region predicted to be in the vicinity of the nucleotide binding site. A deletion was also constructed to remove the C-terminal structural domain defined by the model; it retained about 1% of wild type enzymatic activity using CTP as co-substrate, confirming that detectable catalytic activity is exhibited by the N-terminal domain, as defined by the model. Our results suggest a mechanism of differential ATP and CTP binding, which explains how the tRNA NTase, having only one catalytic site, utilizes different nucleotide triphosphates depending on the nature of the tRNA substrate.
Keywords:structure prediction  bioinformatics  active site  protein‐ligand interactions  RNA editing
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号