首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Melatonin-related mitochondrial respiration responses are associated with growth promotion and cold tolerance in plants
Institution:1. College of Food Science and Biotechnology, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Zhejiang Gongshang University, Hangzhou 310018, PR China;1. Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, PR China;2. Department of Botanical and Environmental Sciences, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, 26000, Pakistan;3. Jiangsu Xuzhou Sweetpotato Research Center, Xuzhou, 221121, Jiangsu, PR China
Abstract:Melatonin has the ability to improve plant growth and strengthened plant tolerance to environmental stresses; however, the effects of melatonin on mitochondrial respiration in plants and the underlying biochemical and molecular mechanisms are still unclear. The objective of the study is to determine possible effects of melatonin on mitochondrial respiration and energy efficiency in maize leaves grown under optimum temperature and cold stress and to reveal the relationship between melatonin-induced possible alterations in mitochondrial respiration and cold tolerance. Melatonin and cold stress, alone and in combination, caused significant increases in activities and gene expressions of pyruvate dehydrogenase, citrate synthase, and malate dehydrogenase, indicating an acceleration in the rate of tricarboxylic acid cycle. Total mitochondrial respiration rate, cytochrome pathway rate, and alternative respiration rate were increased by the application of melatonin and/or cold stress. Similarly, gene expression and protein levels of cytochrome oxidase and alternative oxidase were also enhanced by melatonin and/or cold stress. The highest values for all these parameters were obtained from the seedlings treated with the combined application of melatonin and cold stress. The activity and gene expression of ATP synthase and ATP concentration were augmented by melatonin under control and cold stress. On the other hand, cold stress reduced markedly plant growth parameters, including root length, plant height, leaf surface area, and chlorophyll content and increased the content of reactive oxygen species (ROS), including superoxide anion and hydrogen peroxide and oxidative damage, including malondialdehyde content and electrolyte leakage level; however, melatonin significantly promoted the plant growth parameters and reduced ROS content and oxidative damage under control and cold stress. These data revealed that melatonin-induced growth promotion and cold tolerance in maize is associated with its modulating effect on mitochondrial respiration.
Keywords:Melatonin  Cold stress  Mitochondrial respiration  Plant growth parameters  Oxidative stress
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号