首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Measurement of grouped intracellular solute osmotic virial coefficients
Abstract:Models of cellular osmotic behaviour depend on thermodynamic solution theories to calculate chemical potentials in the solutions inside and outside the cell. These solutions are generally thermodynamically non-ideal under cryobiological conditions. The molality-based Elliott et al. form of the multi-solute osmotic virial equation is a solution theory which has been demonstrated to provide accurate predictions in cryobiological solutions, accounting for the non-ideality of these solutions using solute-specific thermodynamic parameters called osmotic virial coefficients. However, this solution theory requires as inputs the exact concentration of every solute in the solution being modeled, which poses a problem for the cytoplasm, where such detailed information is rarely available. This problem can be overcome by using a grouped solute approach for modeling the cytoplasm, where all the non-permeating intracellular solutes are treated as a single non-permeating “grouped” intracellular solute. We have recently shown (Zielinski et al., J Physical Chemistry B, 2017) that such a grouped solute approach is theoretically valid when used with the Elliott et al. model, and Ross-Rodriguez et al. (Biopreservation and Biobanking, 2012) have previously developed a method for measuring the cell type-specific osmotic virial coefficients of the grouped intracellular solute. However, the Ross-Rodriguez et al. method suffers from a lack of precision, which—as we demonstrate in this work—can severely impact the accuracy of osmotic model predictions under certain conditions. Thus, we herein develop a novel method for measuring grouped intracellular solute osmotic virial coefficients which yields more precise values than the existing method and then apply this new method to measure these coefficients for human umbilical vein endothelial cells.
Keywords:Osmotic virial  Thermodynamics  Modeling  Cryobiology  Grouped solute  Cytoplasm
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号