首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Evidence that functional interactions of CREB and SF-1 mediate hormone regulated expression of the aromatase gene in granulosa cells and constitutive expression in R2C cells
Authors:Diana L Carlone  JoAnne S Richards
Institution:

Department of Cell Biology, Baylor College of Medicine, One Baylor Plaza, Houston TX 77030, U.S.A.

Abstract:The proximal promoter of the rat aromatase CYP19 gene contains two functional domains that can confer hormone/cAMP inducibility in primary cultures of rat granulosa cells and constitutive expression in R2C Leydig cells. Region A contains a hexameric sequence that binds steroidogenic factor-1 (SF-1). Region B contains a CRE-like sequence that binds CREB and two other factors, X and Y. To determine if CRE binding factors X and Y had overlapping functions with CREB, and to determine if the CREB and SF-1 binding sites exhibited functional interactions in the context of the intact promoter, mutations within the CRE and hexameric SF-1 binding site were generated. Mutations within the CRE showed that CREB but not factors X and Y mediated cAMP-dependent activity of chimeric transgenes in primary granulosa cell cultures. Granulosa cells transfected with constructs that bound CREB but not SF-1 (or the converse) resulted in a loss of approximately 50% cAMP-dependent CAT activity. Transgenes that did not bind CREB or SF-1 exhibited no cAMP-dependent CAT activity. When these same constructs where transfected into R2C Leydig cells, mutation of either the CREB or SF-1 binding sites resulted in a greater than 90% loss of CAT activity. Western blot and immunocytochemistry analyses revealed that the amount of phosphorylated CREB increased in response to hormone/cAMP in granulosa cells and was high in R2C Leydig cells, coinciding with expression of the transgenes and endogenous aromatase mRNA in each cell type. Therefore, in both cell types the aromatase promoter is dependent upon a functional CRE and the presence of phosphoCREB. The CREB and SF-1 binding sites interact in an additive manner to mediate cAMP transactivation in granulosa cells, whereas they interact synergistically to confer high basal transactivation in R2C Leydig cells. Taken together, the results indicated that the molecular mechanisms or pathways that activate CREB, SF-1 or their interaction are different in granulosa cells and R2C cells.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号