首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Characterization of volume-sensitive, calcium-permeating pathways in the osteosarcoma cell line UMR-106-01
Authors:D T Yamaguchi  J Green  C R Kleeman  S Muallem
Institution:Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California.
Abstract:Measurements of cell volume changes, free cytosolic Ca2+ concentration ( Ca2+]i) with Fura 2 and cell membrane potential with 3,3'-dipropylthiodicarbocyanine iodide were used to study the effect of cell volume change on Ca2+ influx and the membrane potential of the osteoblastic osteosarcoma cell line, UMR-106-01. Swelling the cells by hypo-osmotic stress was followed by reduction in cell volume which was markedly impaired by removal of medium Ca2+. Accordingly, cell swelling resulted in Ca2+]i increase only in the presence of medium Ca2+. The cell swelling-activated Ca2+ entry pathway was active at resting membrane potentials, and Ca2+ influx through this pathway markedly increased upon cell hyperpolarization. A linear relationship between Ca2+ entry and the potential across the plasma membrane was observed. Thus, the volume-activated Ca2+ permeating pathway in UMR-106-01 cells has conductive properties. These pathways do not spontaneously inactivate with time when the cells are not allowed to volume regulate. The pathway can be blocked by micromolar concentrations of nicardipine and La3+ but display very low sensitivity to diltiazem and verapamil. Activation of the volume-sensitive, Ca2+ permeating pathway was not dependent on an increase in Ca2+]i. Likewise, activation of the pathway was independent of a change in membrane potential between -85 and -3 mV. The increase in Ca2+]i resulted in hyperpolarization of the cells, probably due to activation of Ca2+-activated K+ channels. The volume-sensitive pathways were partially active under isotonic conditions. Their activity was inhibited by cell shrinkage and increased by cell swelling. The pathways were sensitive to small changes in cell volume, particularly around a medium osmolarity of 310 mosM.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号