首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Pre-steady-state and steady-state kinetic analysis of E. coli class I ribonucleotide reductase
Authors:Ge Jie  Yu Guixue  Ator Mark A  Stubbe JoAnne
Institution:Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
Abstract:E. coli ribonucleotide reductase (RNR) catalyzes the conversion of nucleoside diphosphates (NDPs) to dNDPs and is composed of two homodimeric subunits: R1 and R2. R1 binds NDPs and contains binding sites for allosteric effectors that control substrate specificity and turnover rate. R2 contains a diiron-tyrosyl radical (Y(*)) cofactor that initiates nucleotide reduction. Pre-steady-state experiments with wild type R1 or C754S/C759S-R1 and R2 were carried out to determine which step(s) are rate-limiting and whether both active sites of R1 can catalyze nucleotide reduction. Rapid chemical quench experiments monitoring dCDP formation gave k(obs) of 9 +/- 4 s(-1) with an amplitude of 1.7 +/- 0.4 equiv. This amplitude, generated in experiments with pre-reduced R1 (3 or 15 microM) in the absence of reductant, indicates that both monomers of R1 are active. Stopped-flow UV-vis spectroscopy monitoring the concentration of the Y(*) failed to reveal any changes from 2 ms to seconds under similar conditions. These pre-steady-state experiments, in conjunction with the steady-state turnover numbers for dCDP formation of 2-14 s(-1) at RNR concentrations of 0.05-0.4 microM (typical assay conditions), reveal that the rate-determining step is a physical step prior to rapid nucleotide reduction and rapid tyrosine reoxidation to Y(*). Steady-state experiments conducted at RNR concentrations of 3 and 15 microM, typical of pre-steady-state conditions, suggest that, in addition to the slow conformational change(s) prior to chemistry, re-reduction of the active site disulfide to dithiol or a conformational change accompanying this process can also be rate-limiting.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号