首页 | 本学科首页   官方微博 | 高级检索  
     


Akt as a mediator of secretory phospholipase A2 receptor-involved inducible nitric oxide synthase expression
Authors:Park Dae-Won  Kim Jae-Ryong  Kim Seong-Yong  Sonn Jong-Kyung  Bang Ok-Sun  Kang Shin-Sung  Kim Jung-Hye  Baek Suk-Hwan
Affiliation:Department of Biochemistry and Molecular Biology, College of Medicine, Yeungnam University, 317-1 Daemyung-5 Dong, Nam-Gu, Daegu 705-035, Korea.
Abstract:The induction of inducible NO synthase (iNOS) by group IIA phospholipase A(2) (PLA(2)) involves the stimulation of a novel signaling cascade. In this study, we demonstrate that group IIA PLA(2) up-regulates the expression of iNOS through a novel pathway that includes M-type secretory PLA(2) receptor (sPLA(2)R), phosphatidylinositol 3-kinase (PI3K), and Akt. Group IIA PLA(2) stimulated iNOS expression and promoted nitrite production in a dose- and time-dependent manner in Raw264.7 cells. Upon treating with group IIA PLA(2), Akt is phosphorylated in a PI3K-dependent manner. Pretreatment with LY294002, a PI3K inhibitor, strongly suppressed group IIA PLA(2)-induced iNOS expression and PI3K/Akt activation. The promoter activity of iNOS was stimulated by group IIA PLA(2), and this was suppressed by LY294002. Transfection with Akt cDNA resulted in Akt protein overexpression in Raw264.7 cells and effectively enhanced the group IIA PLA(2)-induced reporter activity of the iNOS promoter. M-type sPLA(2)R was highly expressed in Raw264.7 cells. Overexpression of M-type sPLA(2)R enhanced group IIA PLA(2)-induced promoter activity and iNOS protein expression, and these effects were abolished by LY294002. However, site-directed mutation in residue responsible for PLA(2) catalytic activity markedly reduced their ability to production of nitrites and expression of iNOS. These results suggest that group IIA PLA(2) induces nitrite production by involving of M-type sPLA(2)R, which then mediates signal transduction events that lead to PI3K/Akt activation.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号