首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Hysteresis and conformational drift of pressure-dissociated glyceraldehydephosphate dehydrogenase
Authors:K Ruan  G Weber
Institution:Department of Biochemistry, University of Illinois, Urbana 61801.
Abstract:Pressure dissociation of yeast glyceraldehydephosphate dehydrogenase (GAPDH) was studied by fluorescence spectroscopy. Observations in the range of -5 to 30 degrees C indicate that monomer association into the tetramer proceeds with an enthalpy change of -14 kcal mol-1 and a large increase in entropy which at 25 degrees C amounts to 18 kcal mol-1. The large conformational drift and the low-temperature stability of the tetramer recovered after decompression facilitated a comparison of its properties with those of the native tetramer. Significant differences in absorption and fluorescence-excitation polarization spectra, yield of tryptophan fluorescence, and binding of anilinonaphthalenesulfonate and NADH were observed. At 0 degree C the standard free energies of association of the monomers into the native and drifted tetramers were respectively -32 and -29 kcal mol-1. The volume change upon association measured from the pressure span of the compression curves was 200-230 mL mol-1 but four times as large when derived from the displacement of the compression curves with total protein concentration. This large discrepancy can be explained by the existence in the native tetramer population of a distribution of free energies of association with a dispersion from the mean of about 6 kcal mol-1. At 0 degree C and 1 bar ATP and ADP decreased the stability of the GAPDH tetramer by changes in free energy of association of +3.7 and +4.1 kcal mol-1, respectively. NAD and c-AMP stabilized it by -2.3 and -1.3 kcal mol-1. The variation in sign and magnitude of the ligand-induced changes in free energy of association observed in this case, and previously in hexokinase Ruan, K., & Weber, G. (1988) Biochemistry 27, 3295], and the heterogeneity of the free energy of association of GAPDH, revealed as indicated above, lead to the conclusion that oligomeric aggregates exist in a variety of conformations that depend upon the protein concentration, temperature, pressure, and the presence of specific ligands. The multiplicity of species revealed by the energetics raises questions about the significance of the structures of oligomeric proteins determined by X-ray crystallography.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号