首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Morphogenesis of bacteriophage lambda deletion mutants. I. Abnormal head-related structures produced in normal Escherichia coli.
Authors:D Henderson  J Weil
Institution:Department of Molecular Biology, Vanderbilt University Nashville, Tenn. 37325, U.S.A.
Abstract:Late in the morphogenesis of bacteriophage lambda, DNA condenses into the nascent head and is cut from a concatemeric replicative intermediate by a nucleolytic function, Ter, acting at specific sites, called cos. As a result of this process, heads of lambda deletion mutants contain less DNA than those of the wild-type phage. It has been reported that phage with very large deletions (22% of the genome or more) grow poorly but that normal growth can be restored by the non-specific addition of DNA to the genome. This finding implies that DNA content may exert a physical effect on some stage of head assembly.We have investigated the effects of two long deletions, b221 and tdel33, on head assembly. Bacteria infected with the mutants were lysed with non-ionic detergent under conditions favoring stabilization of labile structures containing condensed DNA. It has proved possible to isolate two aberrant head-related structures produced by the deletion mutants. One of these (“overfilled heads”) contains DNA which is longer than the deletion mutant genome and is about the same size as that found in wild-type heads. These structures appear to be unable to attach tails. The second type of structure (“incompletely filled heads”) contains a short piece of DNA, 40% of the length of the mutant genome. The incompletely filled heads are found both with and without attached tails. Both of these abnormal structures are initially attached to the replicating DNA but are released by treatment with DNAase. The nature of these abnormal structures indicates that very small genomes affect a late stage of head morphogenesis, after the DNA is complexed with a capsid of normal size. The results presented suggest that underfilling of the capsid interferes with the ability of the Ter function to properly cleave cos.
Keywords:Present address  to which correspondence should be sent: Max Planck Institut für Biophysikalische Chemie  D-3400 Göttingen-Nikolausberg  West Germany  
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号