首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Intra- and intermolecular transfers of protein radicals in the reactions of sperm whale myoglobin with hydrogen peroxide
Authors:Lardinois Olivier M  Ortiz de Montellano Paul R
Institution:Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143-2280, USA.
Abstract:Reaction of sperm whale metmyoglobin (SwMb) with H2O2 produces a ferryl (MbFeIV=O) species and a protein radical and leads to the formation of oligomeric products. The ferryl species is maximally formed with one equivalent of H2O2, and the maximum yields of the dimer (28%) and trimer (17%) with 1 or 2 eq. Co-incubation of the SwMb Y151F mutant with native apoSwMb and H2O2 produced dimeric products, which requires radical transfer from the nondimerizing Y151F mutant to apoSwMb. Autoreduction of ferryl SwMb to the ferric state is biphasic with t = 3.4 and 25.9 min. An intramolecular autoreduction process is implicated at low protein concentrations, but oligomerization decreases the lifetime of the ferryl species at high protein concentrations. A fraction of the protein remained monomeric. This dimerization-resistant protein was in the ferryl state, but after autoreduction it underwent normal dimerization with H2O2. Proteolytic digestion established the presence of both dityrosine and isodityrosine cross-links in the oligomeric proteins, with the isodityrosine links primarily forged by Tyr151-Tyr151 coupling. The tyrosine content decreased by 47% in the dimer and 14% in the recovered monomer, but the yields of isodityrosine and dityrosine in the dimer were only 15.2 and 6.8% of the original tyrosine content. Approximately 23% of the lost tyrosines therefore have an alternative but unknown fate. The results clearly demonstrate the concurrence of intra- and intermolecular electron transfer processes involving Mb protein radicals. Intermolecular electron transfers that generate protein radicals on bystander proteins are likely to propagate the cellular damage initiated by the reaction of metalloproteins with H2O2.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号