首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Studies on the formation and stability of a complex between Streptomyces proteinaceous metalloprotease inhibitor and thermolysin.
Authors:S Kunugi  Y Yanagi  K Oda
Institution:Department of Polymer Science and Engineering, Kyoto Institute of Technology, Japan. kunugi@ipc.kit.ac.jp
Abstract:The effects of certain physicochemical parameters on the formation and stability of a complex between Streptomyces proteinaceous metalloprotease inhibitor (SMPI) and thermolysin were investigated. SMPI had its lowest Ki value at a pH of around 6.5 (similar to the pH dependence of the kcat/K(m) of thermolysin catalysis), reflecting the splitting mechanism of the SMPI inhibition of thermolysin. This Ki increased with an increase in pressure, and in (Ki-1) was almost linear with respect to pressure. The volume of the reaction (delta Vcomp), which is the volume change accompanying enzyme-inhibitor complex formation, was calculated as +8.1 +/- 0.3 mL.mol-1, which has a sign opposite to delta Vcomp for neutral peptide inhibitors and acyl-peptide substrates. The temperature dependence of Ki-1 gave the reaction enthalpy (delta Hcomp) and reaction entropy (delta Scomp) of the complex formation as 34.6 +/- 1.4 kJ.mol-1 and 298 +/- 5 J.mol-1.K-1, respectively. These positive reaction volumes and reaction entropies were related to the electrostatic interactions and ionic strength dependence of Ki which corresponded to the key ionic interaction during complex formation. Complex formation with SMPI stabilized thermolysin against pressure perturbation as observed by the changes in the Trp fluorescence of thermolysin with increasing pressure. Thermal stability, however, was affected very little by complex formation with SMPI. Phosphoramidon, Cbz-Phe-Gly-NH2 and Cbz-Phe also positively affected the pressure-tolerance of thermolysin, in the following order: Cbz-Gly-Phe-NH2 < Cbz-Phe < phosphoramidon. The third compound exhibited stabilizing effects comparable with those of SMPI, which suggests that the interaction between SMPI and thermolysin was localized to the reactive site.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号