首页 | 本学科首页   官方微博 | 高级检索  
     


Phytanoyl-CoA hydroxylase: recognition of 3-methyl-branched acyl-coAs and requirement for GTP or ATP and Mg(2+) in addition to its known hydroxylation cofactors
Authors:Croes K  Foulon V  Casteels M  Van Veldhoven P P  Mannaerts G P
Affiliation:Department Moleculaire Celbiologie, Afdeling Farmacologie, Katholieke Universiteit Leuven, Campus Gasthuisberg, Herestraat 49, B-3000 Leuven, Belgium.
Abstract:Phytanoyl-CoA hydroxylase is a peroxisomal alpha-oxidation enzyme that catalyzes the 2-hydroxylation of 3-methyl-branched acyl-CoAs. A polyhistidine-tagged human phytanoyl-CoA hydroxylase was expressed in E. coli and subsequently purified as an active protein. The recombinant enzyme required GTP or ATP and Mg(2+), in addition to its known cofactors Fe(2+), 2-oxoglutarate, and ascorbate. The enzyme was active towards phytanoyl-CoA and 3-methylhexadecanoyl-CoA, but not towards 3-methylhexadecanoic acid. Racemic, R- and S-3-methylhexadecanoyl-CoA were equally well hydroxylated. Hydroxylation of R- and S-3-methylhexadecanoyl-CoA yielded the (2S, 3R) and (2R,3S) isomers of 2-hydroxy-3-methylhexadecanoyl-CoA, respectively. Human phytanoyl-CoA hydroxylase did not show any activity towards 2-methyl- and 4-methyl-branched acyl-CoAs or towards long and very long straight chain acyl-CoAs, excluding a possible role for the enzyme in the formation of 2-hydroxylated and odd-numbered straight chain fatty acids, which are abundantly present in brain. In conclusion, we report the unexpected requirement for ATP or GTP and Mg(2+) of phytanoyl-CoA hydroxylase in addition to the known hydroxylation cofactors. Due to the fact that straight chain fatty acyl-CoAs are not a substrate for phytanoyl-CoA hydroxylase, 2-hydroxylation of fatty acids in brain can be allocated to a different enzyme/pathway.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号