首页 | 本学科首页   官方微博 | 高级检索  
     


An Empirical Method for Establishing Positional Confidence Intervals Tailored for Composite Interval Mapping of QTL
Authors:Andrew Crossett  Nick Lauter  Tanzy M. Love
Affiliation:1. Department of Statistics, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America.; 2. USDA-ARS Corn Insects and Crop Genetics Research Unit and Departments of Plant Pathology and Agronomy, Iowa State University, Ames, Iowa, United States of America.;Virginia Tech, United States of America
Abstract:

Background

Improved genetic resolution and availability of sequenced genomes have made positional cloning of moderate-effect QTL realistic in several systems, emphasizing the need for precise and accurate derivation of positional confidence intervals (CIs) for QTL. Support interval (SI) methods based on the shape of the QTL likelihood curve have proven adequate for standard interval mapping, but have not been shown to be appropriate for use with composite interval mapping (CIM), which is one of the most commonly used QTL mapping methods.

Results

Based on a non-parametric confidence interval (NPCI) method designed for use with the Haley-Knott regression method for mapping QTL, a CIM-specific method (CIM-NPCI) was developed to appropriately account for the selection of background markers during analysis of bootstrap-resampled data sets. Coverage probabilities and interval widths resulting from use of the NPCI, SI, and CIM-NPCI methods were compared in a series of simulations analyzed via CIM, wherein four genetic effects were simulated in chromosomal regions with distinct marker densities while heritability was fixed at 0.6 for a population of 200 isolines. CIM-NPCIs consistently capture the simulated QTL across these conditions while slightly narrower SIs and NPCIs fail at unacceptably high rates, especially in genomic regions where marker density is high, which is increasingly common for real studies. The effects of a known CIM bias toward locating QTL peaks at markers were also investigated for each marker density case. Evaluation of sub-simulations that varied according to the positions of simulated effects relative to the nearest markers showed that the CIM-NPCI method overcomes this bias, offering an explanation for the improved coverage probabilities when marker densities are high.

Conclusions

Extensive simulation studies herein demonstrate that the QTL confidence interval methods typically used to positionally evaluate CIM results can be dramatically improved by accounting for the procedural complexity of CIM via an empirical approach, CIM-NPCI. Confidence intervals are a critical measure of QTL utility, but have received inadequate treatment due to a perception that QTL mapping is not sufficiently precise for procedural improvements to matter. Technological advances will continue to challenge this assumption, creating even more need for the current improvement to be refined.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号