首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Morphology control in co-continuous poly(L-lactide)/polystyrene blends: a route towards highly structured and interconnected porosity in poly(L-lactide) materials
Authors:Sarazin Pierre  Favis Basil D
Institution:Center for Applied Research on Polymers, CRASP, Department of Chemical Engineering Ecole Polytechnique, P.O. Box 6079 Station Centre-Ville, Montréal, Qc, Canada H3C 3A7.
Abstract:Poly(L-lactide) is a biodegradable polymer primarily used in biomedical applications. In this paper, both the microstructure and the region of dual-phase continuity are examined for binary and compatibilized poly(L-lactide)/polystyrene blends (PLLA/PS) prepared by melt mixing. The blends are shown to be completely immiscible with an interfacial tension of 6.1 mN/m. The PS-b-PLLA (24,000-b-28,000) diblock copolymer compatibilizer has an asymmetric effect on the blend. It is effective at compatibilizing 50/50 PLLA/PS blends but is only a marginal emulsifier for blends where PLLA is the dominant matrix. Percent continuity, as estimated by solvent extraction/gravimetry and also torque/composition diagrams clearly indicate an onset of the region of dual-phase continuity at 40-45%PS. It is demonstrated that highly percolated blends of the above materials exist from 40 to 75% PS and 40 to 60% PS for the binary and compatibilized blends, respectively. The scale of the microstructure of the continuous morphology is measured using BET and mercury intrusion porosimetry techniques, after extraction of the PS phase. Both the pore size and extent of continuity can be controlled through composition and interfacial modification. Static annealing of the blend after melt mixing can also be used to substantially increase the pore size of the system. Extraction of the PS phase in the blend, carried out after the above preparation protocols, is a route to generating completely interconnected porosity of highly controlled morphologies (pore size, void volume) in poly(L-lactide) materials. In this study, the pore diameter was controlled from 0.9 to 72 microm for a constant void volume of 45-47%, and the void volume was modified from 35 to 74% depending on the blend composition.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号