首页 | 本学科首页   官方微博 | 高级检索  
   检索      


In vivo passive mechanical properties of the human gastrocnemius muscle belly
Authors:Muraoka Tetsuro  Chino Kentaro  Muramatsu Tadashi  Fukunaga Tetsuo  Kanehisa Hiroaki
Institution:Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro, Tokyo, Japan. muraoka@idaten.c.u-tokyo.ac.jp
Abstract:The purpose of the present study was to determine the in vivo passive mechanical properties, including the length below the slack length, of the gastrocnemius muscle (GAS) belly in humans. Transverse ultrasound images of the medial head of the GAS were taken in 11 subjects during passive knee extension from 80 degrees to 5 degrees with a constant ankle joint angle of 10 degrees (0 degrees is the neutral ankle position: positive values for dorsiflexion). The change in passive ankle joint moment (Mp), which is produced only by the GAS length change, was also measured during passive knee extension. The onset of Mp during passive knee extension was found to be 43+/-8 degrees (mean+/-SD) when the baseline of the Mp was set at the average Mp in the range of 55-60 degrees where the Mp was almost constant (SD<0.03 Nm). At this onset, the muscle fascicle length of the GAS (Lf) was 46+/-7 mm (slack length; Lfs). Lf at 80 degrees was 6+/-4 mm (13+/-6%) less than the Lfs, and Lf at 5 degrees was 12+/-5 mm (27+/-11%) greater than the Lfs. The passive force-resisting compression of the GAS did not produce a dorsiflexion moment in the joint angle range adopted. The passive ankle joint moment increased linearly with Lf (coefficient of determination (R2)=0.85-0.96), and the slopes of the relationships between Lf and Mp, and between the relative Lf to Lfs and Mp were 0.093+/-0.038 Nm/mm and 0.043+/-0.021 Nm/%Lfs. The findings of the present study can be implemented in musculoskeletal modeling, which would provide a more accurate evaluation of the passive mechanical properties of muscle during movement.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号