首页 | 本学科首页   官方微博 | 高级检索  
     


Crystal structure of Helicobacter pylori formamidase AmiF reveals a cysteine-glutamate-lysine catalytic triad
Authors:Hung Chiu-Lien  Liu Jia-Hsin  Chiu Wei-Chun  Huang Shao-Wei  Hwang Jenn-Kang  Wang Wen-Ching
Affiliation:Institute of Molecular and Cellular Biology and Department of Life Science, National Tsing Hua University, Hsinchu 300, Taiwan.
Abstract:Helicobacter pylori AmiF formamidase that hydrolyzes formamide to produce formic acid and ammonia belongs to a member of the nitrilase superfamily. The crystal structure of AmiF was solved to 1.75A resolution using single-wavelength anomalous dispersion methods. The structure consists of a homohexamer related by 3-fold symmetry in which each subunit has an alpha-beta-beta-alpha four-layer architecture characteristic of the nitrilase superfamily. One exterior alpha layer faces the solvent, whereas the other one associates with that of the neighbor subunit, forming a tight alpha-beta-beta-alpha-alpha-beta-beta-alpha dimer. The apo and liganded crystal structures of an inactive mutant C166S were also determined to 2.50 and 2.30 A, respectively. These structures reveal a small formamide-binding pocket that includes Cys(166), Glu(60), and Lys(133) catalytic residues, in which Cys(166) acts as a nucleophile. Analysis of the liganded AmiF and N-carbamoyl d-amino acid amidohydrolase binding pockets reveals a common Cys-Glu-Lys triad, another conserved glutamate, and different subsets of ligand-binding residues. Molecular dynamic simulations show that the conserved triad has minimal fluctuations, catalyzing the hydrolysis of a specific nitrile or amide in the nitrilase superfamily efficiently.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号