首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The adaptor molecule CIN85 regulates Syk tyrosine kinase level by activating the ubiquitin-proteasome degradation pathway
Authors:Peruzzi Giovanna  Molfetta Rosa  Gasparrini Francesca  Vian Laura  Morrone Stefania  Piccoli Mario  Frati Luigi  Santoni Angela  Paolini Rossella
Institution:Department of Experimental Medicine, Institute Pasteur-Fondazione Cenci Bolognetti, University La Sapienza, Rome, Italy.
Abstract:Triggering of mast cells and basophils by IgE and Ag initiates a cascade of biochemical events that lead to cell degranulation and the release of allergic mediators. Receptor aggregation also induces a series of biochemical events capable of limiting FcepsilonRI-triggered signals and functional responses. Relevant to this, we have recently demonstrated that Cbl-interacting 85-kDa protein (CIN85), a multiadaptor protein mainly involved in the process of endocytosis and vesicle trafficking, regulates the Ag-dependent endocytosis of the IgE receptor, with consequent impairment of FcepsilonRI-mediated cell degranulation. The purpose of this study was to further investigate whether CIN85 could alter the FcepsilonRI-mediated signaling by affecting the activity and/or expression of molecules directly implicated in signal propagation. We found that CIN85 overexpression inhibits the FcepsilonRI-induced tyrosine phosphorylation of phospholipase Cgamma, thus altering calcium mobilization. This functional defect is associated with a substantial decrease of Syk protein levels, which are restored by the use of selective proteasome inhibitors, and it is mainly due to the action of the ubiquitin ligase c-Cbl. Furthermore, coimmunoprecipitation experiments demonstrate that CIN85 overexpression limits the ability of Cbl to bind suppressor of TCR signaling 1 (Sts1), a negative regulator of Cbl functions, while CIN85 knockdown favors the formation of Cbl/Sts1 complexes. Altogether, our findings support a new role for CIN85 in regulating Syk protein levels in RBL-2H3 cells through the activation of the ubiquitin-proteasome pathway and provide a mechanism for this regulation involving c-Cbl ligase activity.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号