首页 | 本学科首页   官方微博 | 高级检索  
     


LncRNA SNHG17 interacts with LRPPRC to stabilize c-Myc protein and promote G1/S transition and cell proliferation
Authors:Jin-Yu Liu  Ya-Jing Chen  Huan-Hui Feng  Zhan-Li Chen  Yun-Long Wang  Jin-E Yang  Shi-Mei Zhuang
Affiliation:1.MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Xin Gang Xi Road 135#, Guangzhou, 510275 P. R. China ;2.Key Laboratory of Liver Disease of Guangdong Province, the Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
Abstract:Oncogenic c-Myc is a master regulator of G1/S transition. Long non-coding RNAs (lncRNAs) emerge as new regulators of various cell activities. Here, we found that lncRNA SnoRNA Host Gene 17 (SNHG17) was elevated at the early G1-phase of cell cycle. Both gain- and loss-of function studies disclosed that SNHG17 increased c-Myc protein level, accelerated G1/S transition and cell proliferation, and consequently promoted tumor cell growth in vitro and in vivo. Mechanistically, the 1-150-nt of SNHG17 physically interacted with the 1035-1369-aa of leucine rich pentatricopeptide repeat containing (LRPPRC) protein, and disrupting this interaction abrogated the promoting role of SNHG17 in c-Myc expression, G1/S transition, and cell proliferation. The effect of SNHG17 in stimulating cell proliferation was attenuated by silencing c-Myc or LRPPRC. Furthermore, silencing SNHG17 or LRPPRC increased the level of ubiquitylated c-Myc and reduced the stability of c-Myc protein. Analysis of human hepatocellular carcinoma (HCC) tissues revealed that SNHG17, LRPPRC, and c-Myc were significantly upregulated in HCC, and they showed a positive correlation with each other. High level of SNHG17 or LRPPRC was associated with worse survival of HCC patients. These data suggest that SNHG17 may inhibit c-Myc ubiquitination and thus enhance c-Myc level and facilitate proliferation by interacting with LRPPRC. Our findings identify a novel SNHG17-LRPPRC-c-Myc regulatory axis and elucidate its roles in G1/S transition and tumor growth, which may provide potential targets for cancer therapy.Subject terms: Oncogenes, Cell growth, Long non-coding RNAs
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号