Apoptosis of human carcinoma cells in the presence of inhibitors of glycosphingolipid biosynthesis: I. Treatment of Colo-205 and SKBR3 cells with isomers of PDMP and PPMP |
| |
Authors: | Subhash Basu Rui Ma Brian Mikulla Mathew Bradley Christopher Moulton Manju Basu Sipra Banerjee Jin-ichi Inokuchi |
| |
Affiliation: | (1) Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA;(2) Department of Cancer Biology, Cleveland Clinic Foundation, Cleveland, OH 44129, USA;(3) Department of Biomembranes, Hokkaido University, Sapporo 060-0812, Japan |
| |
Abstract: | Apoptosis, or programmed cell death, plays an important role in many physiological and diseased conditions. Induction of apoptosis in cancer cells by anti-cancer drugs and biosynthetic inhibitors of cells surface glycolipids in the human colon carcinoma cells (Colo-205) are of interest in recent years. In our present studies, we have employed different stereoisomers of PPMP and PDMP (inhibit GlcT-glycosyltransferase (GlcT-GLT)) to initiate apoptosis in Colo-205 cells grown in culture in the presence of 3H-TdR and 3H/or 14C-L-Serine. Our analysis showed that the above reagents (between 1 to 20 μM) initiated apoptosis with induction of Caspase-3 activities and phenotypic morphological changes in a dose-dependent manner. We have observed an increase of radioactive ceramide formation in the presence of a low concentration (1–4 μM) of these reagents in these cell lines. However, high concentrations (4–20 μM) inhibited incorporation of radioactive serine in the higher glycolipids. Colo-205 cells were treated with L-threo-PPMP (0–20 μM) and activities of different GSL: GLTs were estimated in total Golgi-pellets. The cells contained high activity of GalT-4 (UDP-Gal: LcOse3Cer β1-4galactosyltransferase), whereas negligible activity of GalT-3 (UDP-Gal: GM2 β1-3galactosyltransferase) or GM2-synthase activity of the ganglioside pathway was detected. Previously, GLTs involved in the biosynthetic pathway of SA-Lex formation had been detected in these colon carcinoma (or Colo-205) cells (Basu M et al. Glycobiology 1, 527–35 (1991)). However, during progression of apoptosis in Colo-205 cells with increasing concentrations of L-PPMP, the GalT-4 activity was decreased significantly. These changes in the specific activity of GalT-4 in the total Golgi-membranes could be the resultant of decreased gene expression of the enzyme. Published in 2004. This revised version was published online in August 2006 with corrections to the Cover Date. |
| |
Keywords: | |
本文献已被 SpringerLink 等数据库收录! |
|