首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Inhibition of ion permeability control properties of acetylcholine receptor from Torpedo californica by long-chain fatty acids
Authors:T J Andreasen  M G McNamee
Abstract:The characteristics of fatty acid inhibition of acetylcholine receptor function were examined in membrane vesicles prepared from Torpedo californica electroplax. Inhibition of the carbamylcholine-induced increase in sodium ion permeability was correlated with the bulk melting point of exogenously incorporated fatty acids. Above its melting temperature, a fatty acid could inhibit the large increase in cation permeability normally elicited by agonist binding to receptor. Below its melting temperature, a fatty acid was ineffective. None of the fatty acids altered any of the ligand binding properties of the receptor. Inhibitory fatty acids did not induce changes in membrane fluidity, as determined by electron paramagnetic resonance using spin-labeled fatty acids. The spin-labeled fatty acids also acted as inhibitors, and the extent of inhibition depended largely on the position of the nitroxide group along the fatty acid chain. Addition of noninhibitory fatty acid to the vesicle membranes did not protect the receptor from inhibition by spin-labeled fatty acids. The effects of free fatty acids on acetylcholine receptor function are attributed to the disruptions of protein-lipid interactions.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号