首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The 28.3 kDa FK506 binding protein from a thermophilic archaeum, Methanobacterium thermoautotrophicum, protects the denaturation of proteins in vitro.
Authors:A Ideno  T Yoshida  M Furutani  T Maruyama
Institution:Marine Biotechnology Institute Co., Ltd, Kamaishi, Iwate, Japan; Sekisui Chemical Co., Ltd, Minase Research Institute, Osaka, Japan. akira.ideno@kamaishi.mbio.co.jp
Abstract:Two families of FK506 binding protein (FKBP) type peptidyl-prolyl cis-trans isomerase (PPIase) have been found in Archaea. One is the 16-18 kDa short type FKBP family, and another is the 26-30 kDa long type FKBP family. The latter has a longer C-terminal region than the former. In this study, the 28.3 kDa long type FKBP gene from a thermophilic archaeum, Methanobacterium thermoautotrophicum, was expressed in Escherichia coli, and its gene product (MbFK) was characterized. The PPIase activity of MbFK was much lower than those of other FKBPs reported against oligopeptidyl substrates. MbFK protected green fluorescent protein (GFP) and rhodanese from thermal denaturation. Furthermore, MbFK suppressed the aggregation of chemically unfolded rhodanese and elevated the yield of its refolding although this activity was weaker than that of GroEL/ES. We made two deletion mutants, MbFK-N which lacked the C-terminal region, and MbFK-C which had only the C-terminal region. Far-UV CD spectra of these mutants showed that their secondary structures did not change from that of the wild-type. Whereas the PPIase activity of MbFK-N was low but detectable, that of MbFK-C was undetectable. The MbFK-C protected the thermal protein aggregation, and possessed a weak but significant aggregation suppressing activity against chemically unfolded protein. However, the MbFK-N did not suppress the aggregation of chemically unfolded rhodanese while it protected heat induced aggregation of rhodanese. These results may indicate that aggregation suppressing activity of MbFK-W against chemically unfolded protein are exerted mainly by its C-terminal domain while both domains contribute to thermal protein aggregation suppression.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号