首页 | 本学科首页   官方微博 | 高级检索  
     


Contribution of the mevalonate and methylerythritol phosphate pathways to the biosynthesis of gibberellins in Arabidopsis
Authors:Kasahara Hiroyuki  Hanada Atsushi  Kuzuyama Tomohisa  Takagi Motoki  Kamiya Yuji  Yamaguchi Shinjiro
Affiliation:Laboratory for Cellular Growth and Development, Growth Physiology Research Group, Plant Science Center, RIKEN (The Institute of Physical and Chemical Research), Hirosawa 2-1, Wako, Saitama 351-0198, Japan.
Abstract:Gibberellins (GAs) are diterpene plant hormones essential for many developmental processes. Although the GA biosynthesis pathway has been well studied, our knowledge on its early stage is still limited. There are two possible routes for the biosynthesis of isoprenoids leading to GAs, the mevalonate (MVA) pathway in the cytosol and the methylerythritol phosphate (MEP) pathway in plastids. To distinguish these possibilities, metabolites from each isoprenoid pathway were selectively labeled with (13)C in Arabidopsis seedlings. Efficient (13)C-labeling was achieved by blocking the endogenous pathway chemically or genetically during the feed of a (13)C-labeled precursor specific to the MVA or MEP pathways. Gas chromatography-mass spectrometry analyses demonstrated that both MVA and MEP pathways can contribute to the biosyntheses of GAs and campesterol, a cytosolic sterol, in Arabidopsis seedlings. While GAs are predominantly synthesized through the MEP pathway, the MVA pathway plays a major role in the biosynthesis of campesterol. Consistent with some crossover between the two pathways, phenotypic defects caused by the block of the MVA and MEP pathways were partially rescued by exogenous application of the MEP and MVA precursors, respectively. We also provide evidence to suggest that the MVA pathway still contributes to GA biosynthesis when this pathway is limiting.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号