首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Size-dependent sex allocation in hermaphroditic plants: the effects of resource pool and self-incompatibility
Authors:Sato Toshihiko
Institution:Hokkaido Forest Research Institute, Kohsyunai, Bibai, Hokkaido 079-0198, Japan. yasu@ls.tokayu.ac.jp
Abstract:The effects of the resource pool and resource obtained during a season for seed maturation and self-incompatibility on the size-dependency of evolutionarily stable sex allocation were analysed theoretically. In hermaphroditic plants, reproductive resources allocated between male and female function may not be paid from a single resource pool, because plants can mature seeds using not only reserved resources but also newly gained resources after flowering. But the resource investment to male function is limited to the flowering stage. Under the assumption of constant reserve efficiency and diminishing resource return per investment to leaves, large plants should use both reserved and newly gained resources for seed maturation, while small plants should use only new resources. When both reserved and new resources are used, the optimal allocation for self-compatible species is to invest a constant amount of resources into male function irrespective of resource size, because the female fitness curve increases linearly and the male curve decelerates due to local mate competition. In self-incompatible species, on the other hand, fitness gain per investment through male function and the optimal amount of resources invested in male function decrease with size. Thus a decrease in maleness with size should be emphasized more in self-incompatible species than in self-compatible one. When only new resources are used for seed growth, the female fitness curve as well as male one decelerates with investment. Consequently, the investment in both male and female functions should increase with size, in both self-compatible and self-incompatible species. The magnitude of reserve efficiency relative to efficiency of resource gain after flowering affects size-dependent pattern of sex allocation, while the cost of seed maturation relative to ovule production has little effect on it. The plant size variation in a population emphasizes size-dependency of sex allocation. When size variation is large enough, it is possible that large plants become complete female in self-incompatible species, but it is not in self-compatible species.
Keywords:Reproductive organ  LMC  Self-compatible  Hermaphrodite  Seed maturation  Male function
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号