首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The conformation of oxytocin in dimethylsulfoxide as revealed by carbon-13 spin-lattice relaxation times
Authors:R Walter  I C Smith  R Deslauriers
Institution:1. Department of Physiology, Mount Sinai School of Medicine, New York, New York 10029, U.S.A.
Abstract:Information was obtained on rates of overall molecular reorientation and segmental motion of amino acid sidechains of oxytocin in dimethylsulfoxide by determination of spin-lattice relaxation times (T1) at 25 MHz for carbon-13 in natural abundance in the hormone. The T1 values of the α-carbons of amino acid residues located in the 20-membered ring of oxytocin are all about 50 msec. The overall correlation time for the hormone backbone was estimated to be 8.8 × 10?10 sec. The sidechains of Tyr, Ile and Gln undergo segmental motion with respect to the backbone of the ring. The T1 value of the α-carbon of the Leu residue is greater than for any α-carbon in the ring, indicating an increased mobility of the backbone of the C-terminal acyclic peptide as compared to the ring. The β- and γ-carbons of the Pro residue undergo an exo-endo interconversion with regard to the plane formed by α-carbon, δ-carbon and N atom of the Pro pyrollidine ring. These data are discussed in light of results from other experimental and theoretical studies, including carbon-13 spin-lattice relaxation times for oxytocin in aqueous solution.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号