首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Optical anisotropy of chromatin. Flow linear dichroism and electric dichroism studies
Authors:S I Dimitrov  I V Smirnov  V L Makarov
Institution:Institute of Molecular Biology Bulgarian Academy of Science Sofia.
Abstract:The optical anisotropy of chromatin with different length of the linker DNA isolated from a variety of sources (Frend erythroleukemia cells, calf thymus, hen erythrocytes and sea urchin sperm) has been studied in a large range of mono- and bivalent cations concentrations by the use of flow linear dichroism (LD) and electric dichroism. We have found that all chromatins studied displayed negative LD values in the range of 0.25 mM EDTA - 2 mM NaCl and close positive values in the range of 2-100 mM NaCl. Mg2+ cations, in contrast to Na+ cations, induce optically isotropic chromatin fibers. All chromatin samples exhibit positive form effect amounting to 5-10% of LD amplitude observed at 260 nm. This form effect is determined by the anisotropic scattering of polarized light by single chromatin fibers. The conformational transition at 2 mM NaCl leads to the distortion of chromatin filament structure. The reversibility of this distortion depends on the length of the linker DNA - for chromatins with the linker DNA of 10-30 b.p. it is parially reversible, while for preparations with longer linker DNA it is irreversible. Relatively low electric field does not affect chromatin structure, while higher electric field (more than 7 kV/cm) distorts the structure of chromatin. Presented results explain the contradictory data obtained by electrooptical and hydrooptical methods.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号