首页 | 本学科首页   官方微博 | 高级检索  
     


Spatiotemporal characteristics and mechanisms of intracellular Ca(2+) increases at fertilization in eggs of jellyfish (Phylum Cnidaria, Class Hydrozoa)
Authors:Deguchi Ryusaku  Kondoh Eri  Itoh Junko
Affiliation:Department of Biology, Miyagi University of Education, Aoba-ku, Sendai, Miyagi 980-0845, Japan. deguchi@staff.miyakyo-u.ac.jp
Abstract:We have clarified, for the first time, the spatiotemporal patterns of intracellular Ca(2+) increases at fertilization and the Ca(2+)-mobilizing mechanisms in eggs of hydrozoan jellyfish, which belong to the evolutionarily old diploblastic phylum, Cnidaria. An initial Ca(2+) increase just after fertilization took the form of a Ca(2+) wave starting from one cortical region of the egg and propagating to its antipode in all of four hydrozoan species tested: Cytaeis uchidae, Cladonema pacificum, Clytia sp., and Gonionema vertens. The initiation site of the Ca(2+) wave was restricted to the animal pole, which is known to be the only area of sperm-egg fusion in hydrozoan eggs, and the wave propagating velocity was estimated to be 4.2-5.9 mum/s. After a Ca(2+) peak had been attained by the initial Ca(2+) wave, the elevated Ca(2+) gradually declined and returned nearly to the resting value at 7-10 min following fertilization. Injection of inositol 1,4,5-trisphosphate (IP(3)), an agonist of IP(3) receptors (IP(3)R), was highly effective in inducing a Ca(2+) increase in unfertilized eggs; IP(3) at a final intracellular concentration of 12-60 nM produced a fully propagating Ca(2+) wave equivalent to that observed at fertilization. In contrast, a higher concentration of cyclic ADP-ribose (cADPR), an agonist of ryanodine receptors (RyR), only generated a localized Ca(2+) increase that did not propagate in the egg. In addition, caffeine, another stimulator of RyR, was completely without effect. Sperm-induced Ca(2+) increases in Gonionema eggs were severely affected by preinjection of heparin, an inhibitor of Ca(2+) release from IP(3)R. These results strongly suggest that there is a well-developed IP(3)R-, but not RyR-mediated Ca(2+) release mechanism in hydrozoan eggs and that the former system primarily functions at fertilization. Our present data also demonstrate that the spatial characteristics and mechanisms of Ca(2+) increases at fertilization in hydrozoan eggs resemble those reported in higher triploblastic animals.
Keywords:Fertilization   Hydrozoan egg   Calcium   IP3   cADPR   Caffeine   Cytaeis   Cladonema   Clytia   Gonionema
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号