首页 | 本学科首页   官方微博 | 高级检索  
     


Mechanisms and implications of animal flight maneuverability
Authors:Dudley Robert
Affiliation:1 Section of Integrative Biology, University of Texas, Austin, Texas 78712 and Smithsonian Tropical Research Institute, P.O. Box 2072, Balboa, Republic of Panama
Abstract:Accelerations and directional changes of flying animals derivefrom interactions between aerodynamic force production and theinertial resistance of the body to translation and rotation.Anatomical and allometric features of body design thus mediatethe rapidity of aerial maneuvers. Both translational and rotationalresponsiveness of the body to applied force decrease with increasedtotal mass. For flying vertebrates, contributions of the relativelyheavy wings to whole-body rotational inertia are substantial,whereas the relatively light wings of many insect taxa suggestthat rotational inertia is dominated by the contributions ofbody segments. In some circumstances, inertial features of wingdesign may be as significant as are their aerodynamic propertiesin influencing the rapidity of body rotations. Stability inflight requires force and moment balances that are usually attainedvia bilateral symmetry in wingbeat kinematics, whereas bodyroll and yaw derive from bilaterally asymmetric movements ofboth axial and appendicular structures. In many flying vertebrates,use of the tail facilitates the generation of aerodynamic torquesand substantially enhances quickness of body rotation. Geometricalconstraints on wingbeat kinematics may limit total force productionand thus accelerational capacity in certain behavioral circumstances.Unitary limits to animal flight performance and maneuverabilityare unlikely, however, given varied and context-specific interactionsamong anatomical, biomechanical, and energetic features of design.
Keywords:
本文献已被 PubMed Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号