首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Characterization of (Na+, K+)-ATPase in gill microsomes of the freshwater shrimp Macrobrachium olfersii
Authors:Furriel R P  McNamara J C  Leone F A
Institution:Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeir?o Preto, Universidade de S?o Paulo, Brazil.
Abstract:To better understand the adaptive strategies that led to freshwater invasion by hyper-regulating Crustacea, we prepared a microsomal (Na+, K+)-ATPase by differential centrifugation of a gill homogenate from the freshwater shrimp Macrobrachium olfersii. Sucrose gradient centrifugation revealed a light fraction containing most of the (Na+, K+)-ATPase activity, contaminated with other ATPases, and a heavy fraction containing negligible (Na+, K+)-ATPase activity. Western blotting showed that M. olfersii gill contains a single alpha-subunit isoform of about 110 kDa. The (Na+, K+)-ATPase hydrolyzed ATP with Michaelis Menten kinetics with K5, = 165+/-5 microM and Vmax = 686.1+/-24.7 U mg(-1). Stimulation by potassium (K0.5 = 2.4+/-0.1 mM) and magnesium ions (K0.5 = 0.76+/-0.03 mM) also obeyed Michaelis-Menten kinetics, while that by sodium ions (K0.5 = 6.0+/-0.2 mM) exhibited site site interactions (n = 1.6). Ouabain (K0.5 = 61.6+/-2.8 microM) and vanadate (K0.5 = 3.2+/-0.1 microM) inhibited up to 70% of the total ATPase activity, while thapsigargin and ethacrynic acid did not affect activity. The remaining 30% activity was inhibited by oligomycin, sodium azide and bafilomycin A. These data suggest that the (Na+, K+)-ATPase corresponds to about 70% of the total ATPase activity; the remaining 30%, i.e. the ouabain-insensitive ATPase activity, apparently correspond to F0F1- and V-ATPases, but not Ca-stimulated and Na- or K-stimulated ATPases. The data confirm the recent invasion of the freshwater biotope by M. olfersii and suggest that (Na+, K+)-ATPase activity may be regulated by the Na+ concentration of the external medium.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号