首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Stimulation of a histone H4 protein kinase in Triton X-100 lysates of rabbit peritoneal neutrophils pretreated with chemotactic factors. Effect of fMet-Leu-Phe and partial characterization of the protein kinase
Authors:C K Huang  G F Laramee
Institution:Department of Pathology, University of Connecticut Health Center, Farmington 06032.
Abstract:Rabbit peritoneal neutrophils were stimulated with either the chemotactic factor, fMet-Leu-Phe (10(-8) M, 10 s) or the protein kinase C activator, phorbol-12-myristate-13-acetate (PMA), (0.1 microgram/ml, 3 min) at 37 degrees C, lysed with Triton X-100 at the indicated times and the histone H4 kinase activity of the lysate measured. The histone H4 protein kinase activity was increased severalfold by fMet-Leu-Phe but not PMA. The inclusion of the potent protein kinase C inhibitor, 1-(5-isoquinoline-sulfonyl)-2-methylpiperazine (50 microM) inhibited little if any of the histone H4 protein kinase activity. The effect of fMet-Leu-Phe was transient, maximum stimulation occurring within 10 s and decaying thereafter. The soluble fraction (extract) of the Triton X-100 lysates from control and fMet-Leu-Phe-treated cells was found to contain both histone H4 protein kinase and calcium-phospholipid-activated protein kinase (protein kinase C) activities. The histone H4 protein kinase activity obtained after fMet-Leu-Phe treatment was very little affected by calcium, phospholipid, and PMA and preferred histone H4 but not H1 or H2A as its substrate. In contrast, the calcium-phospholipid-activated protein kinase activity of the extract preferred histones H1 or H2A as substrates and was strongly inhibited by 1-(5-isoquinoline-sulfonyl)-2-methylpiperazine. The histone H4 protein kinase was partially separated from kinase C by DEAE-cellulose and phenyl-Sepharose 4B chromatography. It phosphorylated mostly serine in histone H4. The results indicate that the chemotactic factor, fMet-Leu-Phe, stimulates a protein kinase with substrate specificity and biochemical properties distinct from calcium-phospholipid-activated protein kinase C.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号