首页 | 本学科首页   官方微博 | 高级检索  
   检索      


The key role of chlorocatechol 1,2-dioxygenase in phytoremoval and degradation of catechol by transgenic Arabidopsis
Authors:Liao Yang  Zhou Xiao  Yu Jin  Cao Yajun  Li Xian  Kuai Benke
Institution:State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai 200433, China.
Abstract:Transgenic exploitation of bacterial degradative genes in plants has been considered a favorable strategy for degrading organic pollutants in the environment. The aromatic ring characteristic of these pollutants is mainly responsible for their recalcitrance to degradation. In this study, a Plesiomonas-derived chlorocatechol 1,2-dioxygenase (TfdC) gene (tfdC), capable of cleaving the aromatic ring, was introduced into Arabidopsis (Arabidopsis thaliana). Morphology and growth of transgenic plants are indistinguishable from those of wild-type plants. In contrast, they show significantly enhanced tolerances to catechol. Transgenic plants also exhibit strikingly higher capabilities of removing catechol from their media and high efficiencies of converting catechol to cis,cis-muconic acid. As far-less-than-calculated amounts of cis,cis-muconic acid were accumulated within the transgenic plants, existence of endogenous TfdD- and TfdE-like activities was postulated and, subsequently, putative orthologs of bacterial tfdD and tfdE were detected in Arabidopsis. However, no TfdC activity and no putative orthologs of either tfdC or tfdF were identified. This work indicates that the TfdC activity, conferred by tfdC in transgenic Arabidopsis, is a key requirement for phytoremoval and degradation of catechol, and also suggests that microbial degradative genes may be transgenically exploited in plants for bioremediation of aromatic pollutants in the environment.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号