Regulation of flagellar glycoprotein movements by protein phosphorylation |
| |
Authors: | R A Bloodgood N L Salomonsky |
| |
Affiliation: | Department of Anatomy and Cell Biology, University for Virginia School of Medicine, Charlottesville. |
| |
Abstract: | Cross-linking of surface exposed domains on certain Chlamydomonas flagellar membrane glycoproteins induces their movement within the plane of the flagellar membrane. A number of observations suggest that active movements of flagellar membrane glycoproteins are associated with the processes of whole cell gliding motility and the early events of fertilization in Chlamydomonas. Protein redistribution is totally inhibited if the free calcium concentration in the medium is 10(-7) M or below or in the presence of a number of calcium channel blockers (Bloodgood, R. A., N. L. Salomonsky, J. Cell Sci. 96, 27-33 (1990]. The present report demonstrates that glycoprotein redistribution in vivo is inhibited reversibly by three different protein kinase inhibitors: H-7, H-8 and staurosporine. Taken together, these observations suggest that the flagellum uses a signaling pathway that involves calcium influx induced by glycoprotein cross-linking, calcium activation of a protein kinase and specific protein phosphorylation to initiate flagellar surface dynamics. |
| |
Keywords: | |
|
|