首页 | 本学科首页   官方微博 | 高级检索  
   检索      


A p85 subunit-independent p110alpha PI 3-kinase colocalizes with p70 S6 kinase on actin stress fibers and regulates thrombin-stimulated stress fiber formation in swiss 3T3 cells
Authors:Johanson S O  Naccache P A  Crouch M F
Institution:John Curtin School of Medical Research, Australian National University, Canberra, 2600, Australia.
Abstract:The signaling pathways linking receptor activation to actin stress fiber rearrangements during growth factor-induced cell shape change are still to be determined. Recently our laboratory demonstrated the involvement of p70 S6 kinase (p70(s6k)) activation in thrombin-induced stress fiber formation in Swiss 3T3 cells. The present work shows that thrombin-induced p70(s6k) activation is inhibited by the PI 3-kinase inhibitors wortmannin and LY-294002. These inhibitors also significantly reduced thrombin-induced stress fiber formation, demonstrating a role for PI 3-kinase activity in this process, most likely upstream of p70(s6k). Furthermore, the p110alpha form of PI 3-kinase was localized to actin stress fibers, as was previously shown for p70(s6k), as well as to a golgi-like distribution. In contrast, PI 3-kinase p110gamma colocalized with microtubules. The PI 3-kinase p85 subunit, known to be capable of association with p110alpha, was present in a predominantly golgi-like distribution with no presence on actin filaments, suggesting the existence of distinctly localized PI 3-kinase pools. Immunodepletion of p85 from cell lysates resulted in only partial depletion of p110alpha and p110alpha-associated PI 3-kinase activity, confirming the presence of a p85-free p110alpha pool located on the actin stress fibers. Our data, therefore, point to the importance of subcellular localization of PI 3-kinase in signal transduction and to a novel action of p85 subunit-independent PI 3-kinase p110alpha in the stimulation by thrombin of p70(s6k) activation and actin stress fiber formation.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号