首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Regulation by adenosine of the vasopressin-sensitive adenylate cyclase in pig-kidney cells (LLC-PK1L) grown in defined media
Authors:C Roy
Abstract:LLC-PK1L cells, a kidney-derived cell line, had sustained growth in a defined medium. When compared to the parent cell line growing with 10% fetal bovine serum, LLC-PK1L cells had about 100-times fewer vasopressin receptors. Upon modifications of the cell culture medium, the vasopressin response of the adenylate cyclase could be increased by more than 10-fold with a parallel increase in vasopressin receptor number. Using cells with high or low receptor densities, the stimulatory and inhibitory effects of N6-L-2-phenylisopropyl-adenosine on the modulation of the adenylate cyclase responsiveness to vasopressin were investigated. When high concentrations of GTP were added, low concentrations of phenylisopropyladenosine inhibited the enzyme, while higher concentrations were found to be stimulatory. The adenylate cyclase activity stimulated by vasopressin could only be inhibited by phenylisopropyladenosine under these conditions in membranes with high receptor density; only the increase in enzyme activity due to high GTP concentration was inhibitable. The analysis of the dependency of the adenylate cyclase activity as a function of the vasopressin concentration showed that, besides reducing the maximum velocity of the system for vasopressin, the addition of phenylisopropyladenosine generated an heterogeneity in the adenylate cyclase response to vasopressin (as judged by a curvilinear Eadie plot). A high-affinity component in the adenylate cyclase response appeared when phenylisopropyladenosine was added. The growth of the cells in a medium containing adenosine deaminase gave results identical to those obtained for control cells. However, growing the cells with both phenylisopropyladenosine and adenosine deaminase abolished the inhibitory effects of the former on the adenylate cyclase and greatly reduced its stimulatory action. Under these conditions, the vasopressin response of the adenylate cyclase was not further regulated by phenylisopropyladenosine. These results indicate a role of adenosine on vasopressin response, especially at low physiological concentrations of the hormone where a high-affinity component of the hormonal response could be demonstrated.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号