首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Translocation of exogenous platelet-activating factor and its lyso-compound through plasma membranes is a rate-limiting step for their metabolic conversions into alkylacylglycerophosphocholines in rabbit platelets and guinea-pig leukocytes
Authors:A Tokumura  T Tsutsumi  J Yoshida  H Tsukatani
Institution:Faculty of Pharmaceutical Sciences, University of Tokushima, Japan.
Abstract:Platelets and leukocytes are known to degrade platelet-activating factor (PAF), a potential mediator of inflammation, to its lyso-derivative (lyso-PAF) and then convert this to 1-O-alkyl-2-acyl-sn-glycero-3-phosphocholines. However, little is known about the mechanism of internalization of PAF and lyso-PAF, which is a prerequisite for their metabolism within the cells. In this work, the internalization of PAF and lyso-PAF by rabbit platelet and guinea-pig leukocyte plasma-membranes were examined by the washing method with bovine serum albumin. The rates of translocation of PAF and lyso-PAF across guinea-pig plasma membranes were significantly higher than those across rabbit platelets. In these cells, the translocation of PAF was found to be accelerated indirectly by activation of PAF receptors by a small portion of added PAF. Results suggest that a temperature-dependent diffusion process is involved in the internalization of these phospholipids. In both rabbit platelets and guinea-pig leukocytes, the translocation of PAF and lyso-PAF through the plasma membranes was shown to be rate-limiting for the metabolic conversion of these compounds to 1-O-alkyl-2-acyl-sn-glycero-3-phosphocholine.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号