PA28 subunits of the mouse proteasome: primary structures and chromosomal localization of the genes |
| |
Authors: | Eman Kandil Keiko Kohda Teruo Ishibashi Keiji Tanaka M. Kasahara |
| |
Affiliation: | (1) Department of Biochemistry, Hokkaido University School of Medicine, Sapporo 060, Japan, JP;(2) Tokyo Metropolitan Institute of Medical Science, Tokyo 113, Japan, JP;(3) CREST, Japan Science and Technology Corporation (JST), Tokyo 101, Japan, JP |
| |
Abstract: | The 20S proteasome is a multi-subunit protease responsible for the production of peptides presented by major histocompatibility complex (MHC) class I molecules. Recent evidence indicates that an interferon-γ (IFN-γ)-inducible PA28 activator complex enhances the generation of class I binding peptides by altering the cleavage pattern of the proteasome. In the present study, we determined the primary structures of the mouse PA28 α- and β-subunits. The deduced amino acid sequences of the α- and β-subunits were 49% identical. We also determined the primary structure of the mouse PA28 γ-subunit (Ki antigen), a protein of unknown function structurally related to the α- and β-subunits. The amino acid sequence identity of the γ-subunit to the α- and β-subunits was 40% and 32%, respectively. Interspecific backcross mapping showed that the mouse genes coding for the α- and β-subunits (designated Psme1 and Psme2, respectively) are tightly linked and map close to the Atp5g1 locus on chromosome 14. Thus, unlike the LMP2 and LMP7 subunits, the IFN-γ-inducible subunits of PA28 are encoded outside the MHC. The gene coding for the γ-subunit (designated Psme3) was mapped to the vicinity of the Brca1 locus on chromosome 11. A computer search of the DNA databases identified a γ-subunit-like protein in ticks and Caenorhabditis elegans, the organisms with no adaptive immune system. It appears that the IFN-γ-inducible α- and β-subunits emerged by gene duplication from a γ-subunit-like precursor. Received: 11 March 1997 |
| |
Keywords: | |
本文献已被 SpringerLink 等数据库收录! |
|