首页 | 本学科首页   官方微博 | 高级检索  
   检索      


A novel GDP-dependent pyruvate kinase isozyme from Toxoplasma gondii localizes to both the apicoplast and the mitochondrion
Authors:Saito Tomoya  Nishi Manami  Lim Muoy I  Wu Bo  Maeda Takuya  Hashimoto Hisayuki  Takeuchi Tsutomu  Roos David S  Asai Takashi
Institution:Department of Tropical Medicine and Parasitology, Keio University School of Medicine, 35 Shinanomachi, Tokyo 160-8582, Japan. asait@sc.itc.keio.ac.jp
Abstract:We previously reported a cytosolic pyruvate kinase (EC 2.7.1.40) from Toxoplasma gondii (TgPyKI) that differs from most eukaryotic pyruvate kinases in being regulated by glucose 6-phosphate rather than fructose 1,6-diphosphate. Another putative pyruvate kinase (TgPyKII) was identified from parasite genome, which exhibits 32% amino acid sequence identity to TgPyKI and retains pyruvate kinase signature motifs and amino acids essential for substrate binding and catalysis. Whereas TgPyKI is most closely related to plant/algal enzymes, phylogenetic analysis suggests a proteobacterial origin for TgPyKII. Enzymatic characterization of recombinant TgPyKII shows a high pH optimum at 8.5, and a preference for GDP as a phosphate recipient. Catalytic activity is independent of K+, and no allosteric or regulatory effects were observed in the presence of fructose 1,6-diphosphate, fructose 2,6-diphosphate, glucose 6-phosphate, ribose 5-phosphate, AMP, or ATP. Unlike TgPyKI, native TgPyKII activity was exclusively associated with the membranous fraction of a T. gondii tachyzoite lysate. TgPyKII possesses a long N-terminal extension containing five putative start codons before the conserved region and localizes to both apicoplast and mitochondrion by immunofluorescence assay using native antibody and fluorescent protein fusion to the N-terminal extension. Further deletional and site-directed mutagenesis suggests that a translation product from 1st Met is responsible for the localization to the apicoplast, whereas one from 3rd Met is for the mitochondrion. This is the first study of a potential mitochondrial pyruvate kinase in any system.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号