首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Orientational interactions in low-concentration DNA solutions
Authors:C Marion  B Roux  M Hanss
Abstract:The rotational relaxation tiem τ3 of DNA molecules (Mw ? 5 × 106) in solution has been determined by the transient electric birefringence method. The analysis of the birefringence decay makes it possible to study only the higher-molecular-weight fraction, the molecules being considered as rigid elongated particles in a short time scale. A marked concentration dependence of the relaxation time has been observed for DNA in low ionic strengths. Above a critical concentration c*, τ3 increases with the DNA concentration, c. The value of c* increases with the ionic strength. For 10?3 ionic strength (with NaCl), c* is about 10 μg/mL; then we observe the same strong concentration dependence of rotational relaxation times as recently reported for rodlike M-13 viruses Maguire, J. F., McTague, J. P. & Rondelez, F. (1980) Phys. Rev. Lett. 45 , 1891–1894]. These results may be discussed in terms of the Doi-Edwards theory for rotational relaxation time of rigid macromolecules Doi, M. (1975) J. Phys. 36 , 607–611; Doi, M. & Edwards, S. F. (1978) J. Chem. Soc. Faraday Trans. 74 , 918–932] and the critical concentration above which the interactions between the molecules begin to appear allows determining the corresponding molecular length. We observe a very good agreement between the DNA lengths obtained from the c* values and by using the infinite dilution value of τ3 and Broersma's equation. Therefore, only highly diluted solutions can be used if intrinsic molecular properties based on the rotational diffusion of high-molecular-weight elongated molecules are studied.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号