首页 | 本学科首页   官方微博 | 高级检索  
     


Prolonged mechanical ventilation induces cell cycle arrest in newborn rat lung
Authors:Kroon Andreas A  Wang Jinxia  Kavanagh Brian P  Kavanagh Brian  Huang Zhen  Kuliszewski Maciej  van Goudoever Johannes B  Post Martin
Affiliation:Physiology and Experimental Medicine Program, Hospital for Sick Children Research Institute, Toronto, Canada.
Abstract:

Rationale

The molecular mechanism(s) by which mechanical ventilation disrupts alveolar development, a hallmark of bronchopulmonary dysplasia, is unknown.

Objective

To determine the effect of 24 h of mechanical ventilation on lung cell cycle regulators, cell proliferation and alveolar formation in newborn rats.

Methods

Seven-day old rats were ventilated with room air for 8, 12 and 24 h using relatively moderate tidal volumes (8.5 mL.kg−1).

Measurement and Main Results

Ventilation for 24 h (h) decreased the number of elastin-positive secondary crests and increased the mean linear intercept, indicating arrest of alveolar development. Proliferation (assessed by BrdU incorporation) was halved after 12 h of ventilation and completely arrested after 24 h. Cyclin D1 and E1 mRNA and protein levels were decreased after 8–24 h of ventilation, while that of p27Kip1 was significantly increased. Mechanical ventilation for 24 h also increased levels of p57Kip2, decreased that of p16INK4a, while the levels of p21Waf/Cip1 and p15INK4b were unchanged. Increased p27Kip1 expression coincided with reduced phosphorylation of p27Kip1 at Thr157, Thr187 and Thr198 (p<0.05), thereby promoting its nuclear localization. Similar -but more rapid- changes in cell cycle regulators were noted when 7-day rats were ventilated with high tidal volume (40 mL.kg−1) and when fetal lung epithelial cells were subjected to a continuous (17% elongation) cyclic stretch.

Conclusion

This is the first demonstration that prolonged (24 h) of mechanical ventilation causes cell cycle arrest in newborn rat lungs; the arrest occurs in G1 and is caused by increased expression and nuclear localization of Cdk inhibitor proteins (p27Kip1, p57Kip2) from the Kip family.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号