首页 | 本学科首页   官方微博 | 高级检索  
     


Metabolic characterization of Palatinate German white wines according to sensory attributes, varieties, and vintages using NMR spectroscopy and multivariate data analyses
Authors:Kashif Ali  Federica Maltese  Reinhard Toepfer  Young Hae Choi  Robert Verpoorte
Affiliation:Division of Pharmacognosy, Section Metabolomics, Institute of Biology, Leiden University, 2333 CC, Leiden, The Netherlands.
Abstract:(1)H NMR (nuclear magnetic resonance spectroscopy) has been used for metabolomic analysis of 'Riesling' and 'Mueller-Thurgau' white wines from the German Palatinate region. Diverse two-dimensional NMR techniques have been applied for the identification of metabolites, including phenolics. It is shown that sensory analysis correlates with NMR-based metabolic profiles of wine. (1)H NMR data in combination with multivariate data analysis methods, like principal component analysis (PCA), partial least squares projections to latent structures (PLS), and bidirectional orthogonal projections to latent structures (O2PLS) analysis, were employed in an attempt to identify the metabolites responsible for the taste of wine, using a non-targeted approach. The high quality wines were characterized by elevated levels of compounds like proline, 2,3-butanediol, malate, quercetin, and catechin. Characterization of wine based on type and vintage was also done using orthogonal projections to latent structures (OPLS) analysis. 'Riesling' wines were characterized by higher levels of catechin, caftarate, valine, proline, malate, and citrate whereas compounds like quercetin, resveratrol, gallate, leucine, threonine, succinate, and lactate, were found discriminating for 'Mueller-Thurgau'. The wines from 2006 vintage were dominated by leucine, phenylalanine, citrate, malate, and phenolics, while valine, proline, alanine, and succinate were predominantly present in the 2007 vintage. Based on these results, it can be postulated the NMR-based metabolomics offers an easy and comprehensive analysis of wine and in combination with multivariate data analyses can be used to investigate the source of the wines and to predict certain sensory aspects of wine.
Keywords:
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号